The application of spatial modeling tools to assess the effect of landscape pattern and arrangement on native bee abundance in Maine's wild blueberries.

Shannon Chapin¹, Cynthia Loftin², Frank Drummond³

¹Department of Wildlife Ecology, University of Maine, ²USGS Maine Cooperative Fish and Wildlife Research Unit, ³School of Biology and Ecology, University of Maine

Maine,

blueberries and bees

- Country's largest producer of wild lowbush blueberries
- Wild blueberries, like 75% of the world's crops (Klein et al. 2007), benefit from animal pollination
- Country's second largest importer of non-native honeybees
- Decline in honeybees has increased the cost of hive rentals

Maine,

blueberries and bees

- Native bees are more productive blueberry pollinators than honeybees
- Native bees have adapted to forage in low light levels and cool temperatures
- Of the 270 native bee species in Maine, more than 40 species pollinate blueberries
- Most native bees are solitary species

USDA - pollination security for fruit and vegetable crops in the northeast

- Collaborative work between economists, anthropologists, biologists, spatial ecologists, and growers
- 5 institutions
- NY apples, CT squash and pumpkin, MA – cranberries, ME – wild blueberries
- Develop recommendations for growers to sustainably manage and protect native pollinator diversity in and around their farms

Native bees and the landscape

Suggested as the next step: Does the pattern and arrangement of the habitat influence pollinator abundance?

InVEST Crop Pollination Model

- Relationship between habitat and bee abundance has been incorporated into the InVEST Crop Pollination Model
- Aim of InVEST: remotely map the relative abundance of pollinators across a landscape using only a landcover layer and user-provided parameters

Research Questions

- 1. Does the InVEST Crop Pollination Model provide a good fit for predicting native bee abundance in Maine's blueberry fields?
- 2. Is the InVEST model sensitive to the user provided parameters?
- 3. What are the optimal parameters needed to predict field collected bee abundance data in our area?
- 4. Is there a relationship between landscape pattern and arrangement, and pollination services?

Research Question 1:

Does the InVEST Crop Pollination Model provide a good fit for predicting native bee abundance in Maine's blueberry fields?

InVEST Crop Pollination Model

 Aim of InVEST: remotely map the relative abundance of pollinators across a landscape using only a landcover layer and user-provided parameters

Landscape	Crop	Predicted Variance (%)
California	Sunflower, Watermelon	55
Costa Rica	Coffee	80
New Jersey, Pennsylvania	Watermelon	4

Input Parameters

Species	Ground Nester?	Cavity Nester?	Foraging Range
Short Dist. Forager			
(Halictus)	yes	no	100 meters
Long Dist. Forager			
(Bombus)	yes	yes	4000 meters

	Nest Suitability (Ground)	Nest Suitability (Cavity)	Floral Resource Suitability
by Landcover			
Class	0 – 1	0 -1	0 – 1

Data Requirement 1 – Landcover Layer

Spatial Dataset	Date	Resolution (meters)	Blueberry Class?	Accuracy (%)	# of Fields
MELCD	2004	5	Commerical Blueberries	89.7	1,258
USDA Cropland Dataset	2012	30	Blueberries	80.7	55,676

Major differences between the two, so...

- SPOT imagery, 2011 10 meter, 3,600 km² scene
- Also incorporate ancillary GIS data

Data Requirements 2 & 3 – Bee Data & Landcover Suitability

• Bee foraging/flight distances (Greenleaf et al. 2007)

 $\log_{\text{foraging distance}} = \log((-1.643 \pm 0.582) + (3.242 \pm 1.218))^*(\log_{\text{IT span}})$

 All other parameter values were developed through an expert opinion survey and available literature

Study Extents

Input Parameters -Bees

Species	Nest Substrate	Typical Foraging Distance (m)	General Flight Season
Andrena carlini	ground	598	Mar - Aug
Andrena carolina	ground	246	Apr - Jul
Andrena vicina	ground	569	Mar - Aug
Augochlorella aurata	ground	60	Apr - Oct
Colletes inaequalis	ground	1091	Mar – Sept
Halictus ligatus	ground	148	Mar – Nov
Lasioglossum acuminatum	ground	186	Apr – Oct
Lasioglossum cressonii	cavity	63	Mar – Oct
Lasioglossum heterognathum	ground	16	Apr - Sept
Lasioglossum leucocomum	ground	31	Mar – Oct
Lasioglossum pectorale	ground	81	Mar – Nov
Lasioglossum versatum	ground	79	Mar – Oct
Osmia atriventris	cavity	186	Apr – Jul
Osmia inspergens	cavity	495	May – June

Input Parameters – Landcover

Landcover Type	Nesting – Ground	Nesting – Cavity	Forage – Spring	Forage – Early Summer	Forage – Late Summer
Deciduous/Mixed Forest, edge	0.9	1.0	0.9	0.9	1.0
Developed/Other	0.9	0.6	1.0	0.9	1.0
Coniferous Forest	0.5	0.6	0.1	0.1	0.1
Deciduous/Mixed Forest	0.6	0.9	0.7	0.5	0.4
Emergent Wetlands/					
Scrub Shrub	0.2	0.4	0.7	0.6	0.6
Wetlands/Water	0.1	0.1	0.3	0.2	0.5
Agriculture/Field	0.7	0.2	0.9	0.7	0.9
Blueberries	1.0	0.4	0.4	1.0	0.5

Analysis: InVEST validation

Run	Extent	Number of Species Modeled	Landcover Dataset	Validation Dataset	r
1	# 1	9 total	updated landcover, no SPOT, no soils	7 sites	0.77
2	# 1	9 total	updated landcover, no SPOT, with soils	7 sites	0.76
3	# 1	9 total	updated landcover, with SPOT, no soils	7 sites	0.77
4	# 1	6 total	updated landcover, no SPOT, no soils	7 sites	0.86
5	# 3	9 total	updated landcover, no SPOT, no soils	40 sites	0.36
6	# 3	14 total	updated landcover, no SPOT, no soils	40 sites	0.32

Research Question 2 : Is the InVEST model sensitive to the userprovided parameters?

Sensitivity Analysis

 Study of how the uncertainty in the output of a model can be apportioned to different sources of uncertainty in its inputs.

 Goal is to calculate how variation in each parameter affects estimates of a parcel's pollinator abundance, independent of all other parameters in the model (Lonsdorf et al. 2009)

Parameter	Estimate	Max	Min
Forage Suitability - Spring			
Deciduous/Mixed Forest, edge	0.9	1	0.8
Developed/Other	1	1	0.9
Coniferous Forest	0.1	0.2	0.1
Deciduous/Mixed Forest	0.7	0.8	0.6
Emergent Wetlands/Scrub Shrub	0.7	0.8	0.6
Wetlands/Water	0.3	0.4	0.2
Agriculture/Field	0.9	1	0.8
Blueberries	0.4	0.5	0.3

Question 2: Is the InVEST model sensitive to the user-provided parameters?

Research Question 3 : What are the optimal parameter values needed to predict field collected bee abundance data in our area?

Model Optimization

Simulated annealing

 Compare results of expert opinion survey to optimized results

Question 3: What are the optimal parameter values needed to predict bee abundance data in our area? •25

Research Question 4 : Is there a relationship between landscape pattern and arrangement, and pollination services?

Neutral Landscape Models (NLMs)

1. Determine the extent that some properties of a landscape deviate from random

2. Predict how ecological processes are affected by the landscape structure

Question 4: Is there a relationship between landscape pattern and pollination services?

InVEST ->Neutral Landscape Models

- 1. Create fractal NLMs using QRULE
- 2. Re-run InVEST Crop Pollination Model on simulated NLMs
- 3. Regress changes in InVEST model output of bee abundance to landscape metrics (i.e. # of patches, average patch size, and patch compactness).

My contributions

- Economists: Are growers more likely to experience lower profits in areas with lower native bee abundance (as predicted by the InVEST model) ?
- Anthropologists: Are growers more likely to adopt practices to enhance native bee habitat it they live in an area with higher native bee abundance (as predicted by the InVEST model)?
- Growers/Land Managers: If I provide native bee habitat, does the location and arrangement matter for bees? (as predicted by the NLMs in the InVEST model)

Acknowledgments

Committee: Cyndy Loftin, co-advisor; Frank Drummond, co-advisor; Brian McGill

Funding: USDA, University of Maine, USGS Maine CFWRU, OFWIM

Data: Sara Bushmann, Frank Drummond

Advice: Pollination Team, Spatial Ecology Lab Group

Photos: AirPhoto - Jim Wark, Maine ACF, Bangor Daily News, Amy Campbell

Questions, Comments, Suggestions?